A pipeline release at an active multi-well pad in Central Alberta required remediation due to BTEX, F1, F2, and PAH contamination in 2,000 m³ of impacted soil and groundwater, with remediation timeframes limited by site conditions. A staged risk-based in-situ chemical oxidation (ISCO) approach was implemented with a 3-meter injection radius, involving the installation of 52 injection wells and five permeable reaction trenches to facilitate groundwater extraction and oxidant circulation. A total of 17,500 liters of 12% EHP (enhanced hydrogen peroxide) was injected using TRIUM’s ChemOx® process, with injections timed during frost-cap months to maintain pressure. Results show a well-defined and shrinking plume, significant source area concentration reductions, and an approximate 90% decrease in PHC and PAH concentrations since project inception.
Today, we dive deeper into the internal challenges that impact your operations, particularly focusing on the sustainability issues tied to moving soil—and the risks of mistakenly moving clean soil.
This article is PART 1 of a three part series that explores the challenges and opportunities in managing contaminated soil. Today, we begin by examining the facts and asking key questions that may guide your next steps.